LT^2C^2: A language of thought with Turing-computable Kolmogorov complexity
نویسندگان
چکیده
In this paper, we present a theoretical effort to connect the theory of program size to psychology by implementing a concrete language of thought with Turing-computable Kolmogorov complexity (LTC) satisfying the following requirements: 1) to be simple enough so that the complexity of any given finite binary sequence can be computed, 2) to be based on tangible operations of human reasoning (printing, repeating,. . . ), 3) to be sufficiently powerful to generate all possible sequences but not too powerful as to identify regularities which would be invisible to humans. We first formalize LTC, giving its syntax and semantics and defining an adequate notion of program size. Our setting leads to a Kolmogorov complexity function relative to LTC which is computable in polynomial time, and it also induces a prediction algorithm in the spirit of Solomonoff’s inductive inference theory. We then prove the efficacy of this language by investigating regularities in strings produced by participants attempting to generate random strings. Participants had a profound understanding of randomness and hence avoided typical misconceptions such as exaggerating the number of alternations. We reasoned that remaining regularities would express the algorithmic nature of human thoughts, revealed in the form of specific patterns. Kolmogorov complexity relative to LTC passed three expected tests examined here: 1) human sequences were less complex than control PRNG sequences, 2) human sequences were not stationary, showing decreasing values of complexity resulting from fatigue, 3) each individual showed traces of algorithmic stability since fitting of partial sequences was more effective to predict subsequent sequences than average fits. This work extends on previous efforts to combine notions of Kolmogorov complexity theory and algorithmic information theory to psychology, by explicitly proposing a language which may describe the patterns of human thoughts.
منابع مشابه
Kolmogorov Complexity: Sources, Theory and Applications
The theory of Kolmogorov complexity is based on the discovery, by Alan Turing in 1936, of the universal Turing machine. After proposing the Turing machine as an explanation of the notion of a computing machine, Turing found that there exists one Turing machine which can simulate any other Turing machine. Complexity, according to Kolmogorov, can be measured by the length of the shortest program ...
متن کاملSub-computable Boundedness Randomness
This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-Löf tests, (2) Kolmogorov complexity, and (3)...
متن کاملA Short Introduction to Kolmogorov Complexity
This is a short introduction to Kolmogorov complexity and information theory. The interested reader is referred to the literature, especially the textbooks [CT91] and [LV97] which cover the fields of information theory and Kolmogorov complexity in depth and with all the necessary rigor. They are well to read and require only a minimum of prior knowledge. Kolmogorov complexity. Also known as alg...
متن کاملUpper bound by Kolmogorov complexity for the probability in computable POVM measurement
We apply algorithmic information theory to quantum mechanics in order to shed light on an algorithmic structure which inheres in quantum mechanics. There are two equivalent ways to define the (classical) Kolmogorov complexity K(s) of a given classical finite binary string s. In the standard way, K(s) is defined as the length of the shortest input string for the universal self-delimiting Turing ...
متن کاملStrongly Bounded Turing Reducibilities and Computably Enumerable Sets
Preface In this course we survey some recent work on the strongly bounded Turing re-ducibilities on the computably enumerable sets. Bounded Turing reducibilities are obtained from classical Turing reducibility by imposing upper bounds on the use functions (i.e., on the size of the oracle queries) of the reductions. The most popular bounded Turing reducibility which has been intensively studied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.0875 شماره
صفحات -
تاریخ انتشار 2013